Augmentation of bursting pacemaker activity by egg-laying hormone in Aplysia neuron R15 is mediated by a cyclic AMP-dependent increase in Ca2+ and K+ currents.
نویسندگان
چکیده
Release of the neuropeptide egg-laying hormone (ELH) from Aplysia bag cell neurons augments the endogenous bursting pacemaker activity of neuron R15. We have studied the ionic mechanisms underlying the effect of ELH in voltage-clamped R15 neurons. Both electrical discharge of the bag cells, which releases endogenous ELH, and application of synthetic ELH on cell R15 result in an increase in two discrete ionic currents. One of these currents activates with hyperpolarization, reverses near the K+ equilibrium potential, is sensitive to the external K+ concentration, and is blocked by addition of 5 mM Rb+ or 1 mM Ba2+ to the bathing medium. This current appears to be identical to the inwardly rectifying K+ current IR. The other current activates with depolarization and is blocked by replacement of external Ca2+ with Co2+ or Mn2+. This current appears to be a voltage-gated Ca2+ current ICa. Both ICa and IR in R15 have previously been shown to be enhanced by the neurotransmitter serotonin, acting via intracellular cyclic AMP. We now report that increasing cyclic AMP in R15, by applying either serotonin or the adenylate cyclase activator forskolin together with a phosphodiesterase inhibitor, mimics and occludes the action of ELH on neuron R15. Furthermore, application of ELH increases the cyclic AMP content of single R15 neurons, as measured by radioimmunoassay. Finally, the effects of ELH are potentiated by a phosphodiesterase inhibitor. These results suggest that ELH augments bursting activity in R15 by causing cyclic AMP-mediated increases in IR and ICa.
منابع مشابه
Serotonin acting via cyclic AMP enhances both the hyperpolarizing and depolarizing phases of bursting pacemaker activity in the Aplysia neuron R15.
Bath application of 5-HT, at concentrations below 10 microM, enhances the amplitude of the interburst hyperpolarization in the Aplysia bursting pacemaker neuron R15. It is known that 5-HT acts via cyclic AMP to produce this effect by increasing the inwardly rectifying potassium current (IR). Here, we report that further elevating the concentration of 5-HT produces an enhancement of the depolari...
متن کاملMechanism of calcium-dependent inactivation of a potassium current in Aplysia neuron R15: interaction between calcium and cyclic AMP.
In the preceding paper (Kramer and Levitan, 1988), we presented evidence that an inwardly rectifying K+ current (IR) is inactivated by Ca2+ influx accompanying spontaneous bursting activity in the Aplysia neuron R15. In this paper we examine the mechanism that enables Ca2+ to inactivate IR. Since IR is enhanced by cyclic AMP in neuron R15 (Drummond et al., 1980; Benson and Levitan, 1983), we ex...
متن کاملA cyclic GMP analog decreases the currents underlying bursting activity in the Aplysia neuron R15.
Bath application of 8-parachlorophenylthio-cyclic GMP (8-pcpt-cGMP) has been shown to increase the number of action potentials per burst in the Aplysia neuron R15. Here we report that 8-pcpt-cGMP can eventually inhibit R15's bursting activity and cause the cell to exhibit slow tonic spiking activity. This action is preceded by decreases in spike frequency and in the amplitude of the interburst ...
متن کاملCalcium-dependent inactivation of a potassium current in the Aplysia neuron R15.
The endogenously bursting pacemaker neuron R15 of Aplysia exhibits an inwardly rectifying K+ current (IR) that was shown previously to be enhanced by various neurotransmitters via the intracellular second messenger, cyclic AMP (Drummond et al., 1980; Benson and Levitan, 1983; Levitan et al., 1987). Here we present evidence that Ca2+ influx, either caused by spontaneous bursting activity or elic...
متن کاملSynaptic Actions of Identified Peptidergic Neuron Activation of the Large Hermaphroditic Duct R 15 in Aplysia
The purpose of the study described in this and the preceding two companion papers was to determine the synaptic actions of neuron R 15, an endogenously bursting neurosecretory cell in Aplysia, as a step toward determining its physiological function. The results described in this paper demonstrate that activity in R15 activates anterograde peristaltic movements in the segment of the large hermap...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 84 17 شماره
صفحات -
تاریخ انتشار 1987